Backbiting and b-Scission Reactions in Free-Radical Polymerization of Methyl Acrylate
نویسندگان
چکیده
Multiple mechanisms of backbiting and b-scission reactions in free-radical polymerization of methyl acrylate are modeled using different levels of theory, and the rigid-rotor harmonicoscillator (RRHO) and hindered-rotor (HR) approximations. We identify the most cost-effective computational method(s) for studying the reactions and assess the effects of different factors (e.g., functional type and chain length) on thermodynamic quantities, and then identify the most likely mechanisms with first-principles thermodynamic calculations and simulations of nuclear magnetic resonance (NMR) spectra. To this end, the composite method G4(MP2)-6X is used to calculate the energy barrier of a representative backbiting reaction. This calculated barrier is then compared with values obtained using density functional theory (DFT) (B3LYP, M06-2X, and PBE0) and a wavefunction-based quantum chemistry method (MP2) to establish the benchmark method. Our study reveals that the barriers predicted using B3LYP, M06-2X, and G4(MP2)-6X are comparable. The entropies calculated using the RRHO and HR approximations are also comparable. DFT calculations indicate that the 1:5 backbiting mechanism with a six-membered ring transition state and 1:7 backbiting with an eight-membered ring transition state are energetically more favored than 1:3 backbiting and 1:9 backbiting mechanisms. The thermodynamic favorability of 1:5 versus 1:7 backbiting depends on the live polymer chain length. The activation energies and rate constants of the left and right b-scission reactions are nearly equal. The calculated and experimental C and H NMR chemical shifts of polymer chains affected by backbiting and b-scission reactions agree with each other, which provides further evidence in favor of the proposed mechanisms. VC 2013 Wiley Periodicals, Inc.
منابع مشابه
Synthesis, characterization and polymerization of a novel acrylate monomer containing both 4H-pyran-4-one and 1,2,3-triazole moiety and evaluation of their antibacterial activity
A novel acrylate monomer containing 4H-pyran-4-one and 1,2,3-triazole ring, {1-[4-(4-oxo-6-phenyl-4H-pyran-2-yl)benzyl]-1,2,3-triazol-4-yl}methyl acrylate was synthesized by the reaction of 2-{4-[(4-(hydroxymethyl)-1,2,3-triazol-1-yl)methyl]phenyl}-6-phenyl-4H-pyran-4-one with acryloyl chloride in the presence of triethylamine. The structure of the acrylate monomer was established on the basis ...
متن کاملDouble-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate
A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followe...
متن کاملA coumarin dimer probe of mechanochemical scission efficiency in the sonochemical activation of chain-centered mechanophore polymers.
Here we present a coumarin dimer (CD) mechanophore that, when embedded near the mid-chain of poly(methyl acrylate) polymers, activates under pulsed ultrasound conditions to yield coumarin chain-end functional polymers. Quantitative photochemical scission of the CD polymers provides a reference against which the activation efficiency of chain-centered mechanophores in polymers synthesized by con...
متن کاملSimultaneous Monitoring of Polymer and Particle Characteristics during Emulsion Polymerization
Emulsion polymerization reactions constitute complex, nonequilibrium systems in which there is strong interaction between polymers, monomers, and the colloidal structures that mediate the reactions. A novel and general method was sought to monitor emulsion polymerization reactions. Instrumentation and methods were hence developed here to achieve, for the first time, simultaneous monitoring of t...
متن کاملSynthesis and Characterization of Acrylic Copolymers of 4-Chloromethyl Styrene with Incorporation of Phthalimide Groups and Amination of Resulted Polymers
4-ChloroMethyl Styrene (CMS) was copolymerized with different monomers such as Methyl MethAcrylate (MMA), Methyl Acrylate (MA), 2-EthylHexyl Acrylate (EHA) by free radical polymerization method at 70 ±1°C using a,a'-Azobis(IsoButyroNitrile) (AIBN) as an initiator. The copolymer compositions were obtained using related 1HNMR spectra and the poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014